Characterization of Linkage-Based Clustering

Margareta Ackerman
Joint work with
Shai Ben-David and David Loker

University of Waterloo

COLT 2010
There are a wide variety of clustering algorithms, which often produce very different clusterings.

How should a user decide which algorithm to use for a given application?
Our approach for clustering algorithm selection

• Identify properties that separate input-output behaviour of different clustering paradigms

• The properties should
 1) Be intuitive and meaningful to clustering users
 2) Distinguish between different clustering algorithms

M. Ackerman, S. Ben-David, and D. Loker
Previous work

• Kleinberg proposes abstract properties ("Axioms") of clustering functions (NIPS, 2002)
• Bosagh Zadeh and Ben-David provide a set of properties that characterize *single linkage* clustering (UAI, 2009)
Our contributions

Characterize *linkage-based* clustering algorithms, using a set of intuitive properties

M. Ackerman, S. Ben-David, and D. Loker
Outline

• Define linkage-based clustering
• Introduce new clustering properties
• Main result
• Sketch of proof
• Conclusions
For a finite domain set X, a *dissimilarity function* d over the members of X.

A Clustering Function F maps

Input: (X, d) and $k > 0$

to

Output: a k-partition (clustering) of X

We require clustering functions to be representation independent and scale invariant.
Proceed in steps:
• Start with the clustering of singletons
• At each step, merge the closest pair of clusters
• Repeat until only \(k \) clusters remain.

Ex. Single linkage, average linkage, complete linkage

Informally, a linkage function is an extension of the between-point distance that applies to subsets of the domain.

• The choice of the linkage function distinguishes between different linkage-based algorithms.

M. Ackerman, S. Ben-David, and D. Loker
Outline

• Define linkage-based clustering
• Introduce new clustering properties
• Main result
• Sketch of proof
• Conclusions

M. Ackerman, S. Ben-David, and D. Loker
Hierarchical clustering

• A clustering C is a refinement of clustering C' if every cluster in C' is a union of some clusters in C.

• A clustering function is hierarchical if for

\[
\forall X \forall d \quad \text{and every} \quad 1 \leq k \leq k' \leq |X|
\]

$F(X,d,k')$ is a refinement of $F(X,d,k)$.

M. Ackerman, S. Ben-David, and D. Loker
F is *local* if for any X, d, k and any $C \subseteq F(X, d, k)$,
\[
C = F \left(\bigcup_{c \in C} c, d, |C| \right)
\]

M. Ackerman, S. Ben-David, and D. Loker
If d' equals d, except for increasing between-cluster distances, then $F(X,d,k)=F(X,d',k)$ for all d, X, and k.

M. Ackerman, S. Ben-David, and D. Loker
Not all algorithms are local and outer-consistent!

• Some common clustering algorithms fail locality and outer-consistency
 ▪ Ex. Spectral clustering objectives Ratio Cut and Normalized Cut

• Locality and outer-consistency can be used to distinguish between clustering algorithms (they are not axioms).
Extended Richness

M. Ackerman, S. Ben-David, and D. Loker
Extended Richness

$F(X, d, 3)$

X_1, d_1

X_2, d_2

X_3, d_3

M. Ackerman, S. Ben-David, and D. Loker
Extended Richness

\[F(X, d, 3) \]

\[(X_1, d_1) \quad (X_2, d_2) \quad (X_3, d_3) \]

\[F(X, d, k) = \{X_1, X_2, \ldots, X_k\} \]

\[\bigcup_i X_i \]

\[F \text{ satisfies } \textit{extended richness} \text{ if for any set of domains } \{(X_1, d_1), (X_2, d_2), \ldots, (X_k, d_k)\} \]

there is a \(d \) over \(X = \bigcup_i X_i \) that extends each of the \(d_i \)'s so that \(F(X, d, k) = \{X_1, X_2, \ldots, X_k\} \).

M. Ackerman, S. Ben-David, and D. Loker
Outline

• Define linkage-based clustering
• Our new clustering properties
• Main result
• Sketch of proof
• A taxonomy of common clustering algorithms using our properties
• Conclusions
Our main result

Theorem:
A clustering function is Linkage-Based
if and only if
it is Hierarchical, Outer-Consistent, Local and satisfies Extended Richness.

M. Ackerman, S. Ben-David, and D. Loker
Every Linkage-Based clustering function is Hierarchical, Local, Outer-Consistent, and satisfies Extended Richness.

The proof is quite straight-forward.

M. Ackerman, S. Ben-David, and D. Loker
If F is Hierarchical and it satisfies Outer Consistency, Locality and Extended-Richness then F is Linkage-Based.

To prove this direction we first need to formalize linkage-based clustering, by formally defining what is a linkage function.

M. Ackerman, S. Ben-David, and D. Loker
A **linkage function** is a function

\[\ell: \{(X_1, X_2, d) : d \text{ is a dissimilarity function over } X_1 \cup X_2 \} \rightarrow R^+ \]

that satisfies the following:

1) **Representation independent**: Doesn’t change if we re-label the data

2) **Monotonic**: if we increase edges that go between \(X_1 \) and \(X_2 \), then \(\ell(X_1, X_2, d) \) doesn’t decrease.

3) **Any pair of clusters can be made arbitrarily distant**: By increasing edges that go between \(X_1 \) and \(X_2 \), we can make \(\ell(X_1, X_2, d) \) exceed any value in the range of \(\ell \).
Need to prove:
If F is a hierarchical function that satisfies the above clustering properties then F is linkage-based.

Goal:
Given a clustering function F that satisfies the properties, define a linkage function ℓ so that the linkage-based clustering based on ℓ coincides with F (for every X, d and k).
Sketch of proof (continued...)

- Define an operator $\mathbin{<}_F : (A, B, d_1) \mathbin{<}_F (C, D, d_2)$ if there exists d that extends d_1 and d_2 such that when we run F on $(A \cup B \cup C \cup D, d)$, A and B are merged before C and D.

\[F(A \cup B \cup C \cup D, d, 4) \]
Sketch of proof (continued...)

- Define an operator $\prec_F : (A, B, d_1) \prec_F (C, D, d_2)$ if there exists d that extends d_1 and d_2 such that when we run F on $(A \cup B \cup C \cup D, d)$, A and B are merged before C and D.

M. Ackerman, S. Ben-David, and D. Loker
Sketch of proof (continued...)

- Define an operator \(<_F: (A,B,d_1) <_F (C,D,d_2)\) if there exists \(d\) that extends \(d_1\) and \(d_2\) such that when we run \(F\) on \((A \cup B \cup C \cup D, d)\), \(A\) and \(B\) are merged before \(C\) and \(D\).
- Prove that \(<_F\) can be extended to a partial ordering
- Use the ordering to define \(\ell\)
Sketch of proof continue:
Show that $<_F$ is a partial ordering

We show that $<_F$ is cycle-free.

Lemma: Given a function F that is hierarchical, local, outer-consistent and satisfies extended richness, there are no $(A_1, B_1, d_1), (A_2, B_2, d_1), \ldots, (A_n, B_n, d_1)$ so that $(A_1, B_1, d_1) <_F (A_2, B_2, d_2) <_F \cdots <_F (A_n, B_n, d_n)$ and $(A_1, B_1, d_1) = (A_n, B_n, d_n)$
By the above Lemma, the transitive closure of \prec_F is a partial ordering.

This implies that there exists an order preserving function ℓ that maps pairs of data sets to \mathbb{R} (since \prec_F is defined over a countable set).

It can be shown that ℓ satisfies the properties of a linkage function.
Conclusions

- We introduced new meaningful properties of clustering algorithms.
- Prove they characterize linkage-based algorithms.
- Whenever all these properties are desirable, a linkage-based algorithm should be used.